Fibonacci numbers in binary system

We get the sequence of Fibonacci numbers by slightly changing the binary number system – let’s do the conversion.  Example:
(n)_{notation}
(5)_{10}=(101)_2
How we will transform: we will replace zeros with ones, ones with twos, then we sum them up.  101\rightarrow 212 \rightarrow 5
(6)_{10}=(011)_2 \rightarrow 122 \rightarrow 5
(7)_{10}=(111)_2 \rightarrow 222 \rightarrow 6
Let’s write in two columns the numbers before the conversion, and after:
0\rightarrow 11\rightarrow 22\rightarrow33\rightarrow44\rightarrow45\rightarrow56\rightarrow57\rightarrow68\rightarrow59\rightarrow610\rightarrow611\rightarrow7
The numbers on the right are repeated, let’s count their repetitions:
1\rightarrow12\rightarrow13\rightarrow14\rightarrow25\rightarrow36\rightarrow57\rightarrow88\rightarrow13 ;
We get a sequence of Fibonacci numbers.
To derive a formula for Fibonacci numbers, you need to count the number of repetitions of the number.  I note that each repeated number n (converted from a binary number) occurs in the natural series of numbers in the interval \min=floor \left( \frac{n+1}{2}  \right) \max=2^{n-1} ;
Let’s take the repeating number 8 as an example.  In how many ways can we write the number 8 as a sum of twos and ones?
1+1+1+1+1+1+2
1+1+1+1+2+2
1+1+2+2+2
2+2+2+2
Subtract one deuce from each of the options:
1+1+1+1+1+1
1+1+1+1+2
1+1+2+2
2+2+2
For each case, we calculate the number of combinations from n (the number of numbers) by k (the number of twos), and sum them up.  We get:
\sum_{k=0}^{floor \left( \frac{n-2}{2} \right) } ( \frac{(n-(k+2))!}{(n  -(2k+2))!\cdot k!} )
Wikipedia only mentions diagonal summation in Pascal’s triangle.

Leave a comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Design a site like this with WordPress.com
Get started